

END OF LIFE SOLUTIONS FOR BIOMATERIALS JTI-CS2-2019-CFP10-AIR-03-07

Project started: 1st July 2020 Project will finish: 1st March 2023

Nora Lardiés Miazza

Chemical recycling area <u>nlardies@aimplas.es</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme for the Clean Sky Joint Technology Initiative under grant agreement No 886416. This publication reflects only the author's view and that the Commission is not responsible for any use that may be made of the information it contains.

Index:

- What is AIMPLAS?
- ELIOT project objectives
- WPs
- Recycling technologies
 - Pyrolysis
 - Solvolysis
 - Biological degradation
- Looking for stakeholders

Clean Sky₂

Excellence in Plastics

What is AIMPLAS?

A technology centre with more than 30 years' experience in the plastic sector.

More than **10,500 m²** of cutting-edge facilities

Pilot plants (6,000 m²)

Laboratories (4,500 m²)

Expertise across the entire plastics value chain

Main technical objective: full-scale demonstration of the most promising EoL methods for biocomposite waste:

- Definition and development of potential recovery solutions for biocomposite waste from EoL aircraft
- □ Selection of the best EoL methods for biocomposite waste
- □ Testing of the EoL methods for biocomposite waste at laboratory scale
- □ Full-scale demonstration of the EoL methods for biocomposite waste

Different EoL methods for waste recovery and recycling will be evaluated:

- ✓ Mechanical
- ✓ Thermal
- ✓ Chemical
- ✓ Biological
- A comparison of the advantages and disadvantages of the EoL methods in terms of cost and environmental sustainability will be conducted

WPs

Funnel methodology followed in ELIOT

10

TRLs of ELIOT solutions

WPs

TECHNOLOGY READINESS LEVEL		CURRENT STATE OF EOL METHOD FOR CONVENTIONAL COMPOSITES		ELIOT EOL METHODS FOR BIOCOMPOSITES		\wedge	
9	ACTUAL SYSTEM "FLIGHT PROVEN" THROUGH SUCCESFUL MISSION OPERATIONS	INCINERATION	LANDFILL	SOLUTIONS READY FOR PROTOTYPE DEVELOPMENT] ⊵ [\rightarrow
8	ACTUAL SYSTEM COMPLETED AND "FLIGHT QUALIFIED" THROUGH TEST AND DEMONSTRATION (GROUND OR SPACE)	PYROLYSIS (CF)	MECHANICAL RECYCLING (GF)			TER PI	
7	SYSTEM/SUBSYSTEM DEMONSTRATION IN A SPACE ENVIRONMENT	PYROLYSIS (GF)	MECHANICAL RECYCLING (CF)			ROJEC	
6	SYSTEM/SUBSYSTEM MODEL OR PROTOTYPE DEMONSTRATION IN A RELEVANT ENVIRONMENT (GROUND OR SPACE)						
5	COMPONENT AND/OR BREADBOARD VALIDATION IN RELEVANT ENVIRONMENT			BEST METHOD BIOCOMPOSITE A	BEST METHOD BIOCOMPOSITE B	P	M. 30
4	COMPONENT AND/OR BREADBOARD VALIDATION IN LABORATORY ENVIRONMENT	FLUIDISED BED PYROLYSIS	SOLVOLYSIS	METHOD METH RANKED 1 ST RANKE	HOD METHOD ED 2 ND RANKED 3 RD	ROJEC	M. 24
3	ANALYTICAL AND EXPERIMENTAL CRITICAL FUNCTION AND/OR CHARACTERISTIC PROOF-OF-CONCEPT	MICROWAVE-ASSITED PYROLYSIS		3 SELECTED EOL METHODS		T PRO	M. 18
2	TECHNOLOGY CONCEPT AND/OR APPLICATION FORMULATED			12 EOL METHO	DS EVALUATED	GRESS	M. 12
1	BASIC PRINCIPLES OBSERVED/REPORTED			ANY EOL M BIOCOM	ethod for Iposites		M. 0

Recycling technologies

Chemical Recycling

Technology Readiness Level

Pyrolysis

Temperature (>400 degrees) Inert atmosphere Waste mixtures Products: 3 fractions

Solvolysis

Temperature, pressure and solvents supercritical or subcritical conditions

Biological/enzymatic degradation

Applicability of enzymes as biocatalyzers Lower temperatures Bioplastics and conventional plastics

Chemical Recycling

Technology Readiness Level

Pyrolysis

Temperature (>400 degrees) Inert atmosphere Waste mixtures **Products: 3 fractions**

Solvolysis

Temperature, pressure and solvents supercritical or subcritical conditions

Biological/enzymatic degradation

Aplicability of enzymes as biocatalyzers Lower temperaturas **Bioplastics and conventional plastics**

Pyrolysis

AIMPLAS's Pilot plant

MW assisted pyrolysis

• Low efficiency: energy transfer

reactor
High efficiency: Good energy transfer

Pyrolysis

Chemical Recycling

Technology Readiness Level

Pyrolysis

Temperature (>400 degrees) Inert atmosphere Waste mixtures **Products: 3 fractions**

Solvolysis

Temperature, pressure and solvents supercritical or subcritical conditions

Biological/enzymatic degradation

Applicability of enzymes as biocatalyzers Lower temperatures **Bioplastics and conventional plastics**

Solvolysis

Use of solvents, temperature and pressure to carry out the reverse reaction of polymer formation

Depending on the used solvent Methanolysis \rightarrow Methanol Glycolysis \rightarrow Glycol Hydrolysis \rightarrow Water

Different monomer or oligomers are obtained depending on the chemical agent used for the polymer excision

Chemical Recycling

Technology Readiness Level

Pyrolysis

Temperature (>400 degrees) Inert atmosphere Waste mixtures Products: 3 fractions

Solvolysis

Temperature, preasure and solvents supercrítical or subcrítical conditions

Biological/enzymatic degradation

Applicability of enzymes as biocatalyzers Lower temperatures Bioplastics and conventional plastics

Use of enzymes (biocatalyzers) to degrade polymers to monomers or oligomers 🕰

ELICT

Depending on the enzyme used different monomers or oligomers are obtained

Use of **microorganisms** to mineralize polymers to CO_2 and water or biogas

Biological degradation

Initial polyester resin

Polyester resin after degradation

Polyurethane film

Polyurethane film after degradation

Degradation (%) Time (d)

STAKEHOLDERS

The ELIOT team is looking for stakeholders interested in the results of the project:

- We are interested in companies from the composites value chain, including waste managers, recyclers, end users in different sectors, as well as policy makers, sectoral associations and other relevant bodies.
- ELIOT solutions will generate additional market opportunities for the different stakeholders and other sectors interested in green technologies for EoL of natural fibres and bio-resins.
- The stakeholders interested in the project will be invited to a specific workshop to promote the project findings. The workshop will offer the chance to come into discussion with researchers and relevant industry stakeholders.

Thank you!

Nora Lardiés Miazza Chemical recycling area <u>nlardies@aimplas.es</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 760884. This publication reflects only the author's view and that the Commission is not responsible for any use that may be made of the information it contains.

